Restoration of sensorimotor functions after spinal cord injury.

نویسندگان

  • Volker Dietz
  • Karim Fouad
چکیده

The purpose of this review is to discuss the achievements and perspectives regarding rehabilitation of sensorimotor functions after spinal cord injury. In the first part we discuss clinical approaches based on neuroplasticity, a term referring to all adaptive and maladaptive changes within the sensorimotor systems triggered by a spinal cord injury. Neuroplasticity can be facilitated through the training of movements with assistance as needed, and/or by electrical stimulation techniques. The success of such training in individuals with incomplete spinal cord injury critically depends on the presence of physiological proprioceptive input to the spinal cord leading to meaningful muscle activations during movement performances. The addition of rehabilitation technology, such as robotic devices allows for longer training times and provision of feedback information regarding changes in movement performance. Nevertheless, the improvement of function by such approaches for rehabilitation is limited. In the second part, we discuss preclinical approaches to restore function by compensating for the loss of descending input to spinal networks following complete spinal cord injury. This can be achieved with stimulation of spinal networks or approaches to restore their descending input. Electrical and pharmacological stimulation of spinal neural networks is still in an experimental stage; and despite promising repair studies in animal models, translations to humans up to now have not been convincing. It is likely that combinations of techniques targeting the promotion of axonal regeneration and meaningful plasticity are necessary to advance the restoration of function. In the future, refinement of animal studies may contribute to greater translational success.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Npgrj_nn_2069 1..9

Dorsal root injury results in substantial and often irreversible loss of sensory functions as a result of the limited regenerative capacity of sensory axons and the inhibitory barriers that prevent both axonal entry into and regeneration in the spinal cord. Here, we describe previously unknown effects of the growth factor artemin after crush injury of the dorsal spinal nerve roots in rats. Arte...

متن کامل

Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury

Axonal regeneration and fiber regrowth is limited in the adult central nervous system, but research over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorganize after smaller injuries or denervation. Short-distance fiber growth and synaptic rewiring was found in cortex, brain stem and spinal cord and could be associated with restoration ...

متن کامل

Improving outcome of sensorimotor functions after traumatic spinal cord injury

In the rehabilitation of a patient suffering a spinal cord injury (SCI), the exploitation of neuroplasticity is well established. It can be facilitated through the training of functional movements with technical assistance as needed and can improve outcome after an SCI. The success of such training in individuals with incomplete SCI critically depends on the presence of physiological propriocep...

متن کامل

Why does the central nervous system not regenerate after injury?

A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...

متن کامل

Why does the central nervous system not regenerate after injury?

A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 137 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2014